Definition
is locally Lipschitz in if for each , there exists an and s.t.
loc. Lip. in 的意思就是隨便給一個 domain 中的點,都可以找到一個大於 的常數 ,使得只要其它跟它一樣的的點離它夠近,函數值的差就能被它們距離的倍bound住。
Examples
DDE
Consider with for , which can be written as
with and the phase space . (c.f. A More General Discrete Delay)
Suppose that is loc. Lip in . Then is loc. Lip. in . (c.f. Note)
(c.f. NTHU MATH 526500 DDE Note week 3)